B.sc(math H)part3 paper6 Topic Internal direct product of two groups Dr hari kant singh Rrs college mokama

Internal direct product of two groups

Definition: If H, K be any two sub-groups of a group G, then G is said to be internal product of H and K,

i.e.,
$$G = H \times K$$
,

- if (i) Every element of H commutes with every element of K
 - (ii) Every element of G is uniquely expressible as a product of an element of H and an element of K.

Theorem 4. If H and K are two sub-group of a group 6 such that $G = H \times K$, then H and K are normal sub-group of G and $\frac{G}{H} \cong K$ and $\frac{G}{K} \cong H$.

Proof: Let us suppose the mapping $f: G \to H$ defined as

$$\phi(g) = \phi(hk) = h$$

where g = hk is any element of G, $G = H \times K$.

Again by definition, h and k are unique elements of H and K respectively. Now we have to prove that ϕ defined as above is a homomorphism of G onto H.

Consider $g_1 = h_1 k_1$ and $g_2 = h_2 k_2$.

$$g_1 g_2 = h_1 k_1 h_2 k_2$$

= $h_1 h_2 k_1 k_2$, by definition
= $(h_1 h_2) (k_1 k_2)$, where $h_1 h_2 \in H$ and $k_1 k_2 \in K$.
 $\phi (g_1 g_2) = \phi [(h_1 h_2) (k_1 k_2)]$
= $h_1 h_2$, by definition of ϕ
= $\phi (g_1) \phi (g_2)$.

Also ϕ is obviously onto. Thus ϕ is a homomorphism of G onto H. Let us now find kernel of $\phi: G \to H$.

Kernel of
$$\phi = \{g : \phi(g) = e \text{ the identity of } H\}$$

 $\Rightarrow g = ek = k \in K.$

Kernel of $\phi = \{k : k \in K\} = K$.

Since the Kernel of ϕ is a normal sub-group and hence K is a normal ib-group of G.

Also $\frac{G}{K}$ is a quotient group. By fundamental theorem of omomorphism, we know that homomorphic image of H of $\phi: G \to H$ is somorphic to quotient group $\frac{G}{K}$

$$\frac{G}{K} \cong H.$$

Similarly we can prove that H is a normal sub-group and

$$\frac{G}{H}\cong K.$$

Theorem 5. If a group G be the internal direct product of its sub-groups H and K, then

- (i) H and K have only the identity in common.
- (ii) G is isomorphic to external direct product of H by K, i.e. $G \cong H \times K$.

Proof: (i) Consider $x \in H \cap K$ so that $x \in H$ and $x \in K$ and $x^{-1} \in H, x^{-1} \in K$

because both H and K are sub-groups.

 $g \in G$ can be uniquely expressed as Again $g = hk : h \in H, k \in K \text{ as } G = H \times K$

and
$$g = (hx)(x^{-1}k) : hx \in H, x^{-1}k \in K$$

By definition of $G = H \times K$, each element of G can be u_{nique} expressed as the product of an element of H and an element of K.

Thus from (1) and (2), we conclude that

$$hx = h$$
 and $x^{-1}k = k$.

$$hx = h \Rightarrow x = c$$

Therefore e the identity is the only element common to H and k i.c. eE'HOK.

(ii) Suppose that the mapping $\phi: G \to H$ is defined by $\phi(g) = \phi(hk) = (h, k), \forall g \in G.$

$$\phi$$
 is one-one: Let $\phi(g_1) = \phi(g_2) \Rightarrow (h_1, k_1) = (h_2, k_2)$

$$\Rightarrow h_1 = h_2 \text{ and } h_1 = h_2$$

$$\Rightarrow h_1 = h_2 \text{ and } k_1' = k_2$$

$$\Rightarrow h_1 k_1 = h_2 k_2$$

$$\Rightarrow g_1 = g_2$$

⇒ \$\phi\$ is one-one.

 ϕ is onto: Suppose (h, k) be any element of $H \times K$, then $hk \in G$. Also $\phi(hk) = (h, k)$, by definition.

$$\Rightarrow \phi$$
 is onto.

o preserves the composition:

$$\phi (g_1 g_2) = \phi (h_1 k_1, h_2 k_2) = \phi (h_1 h_2 k_1 k_2)$$

because every element of H commutes with every element of K.

$$\begin{array}{ll} \therefore & \phi \ (g_1 \ g_2) &= (h_1 \ h_2, k_1 \ k_2), & (\because h_1 \ h_2 \in H, \ k_1 \ k_2 \in K) \\ &= (h_1, k_1) \ (h_2, k_2) \\ &= \phi \ (h_1 \ k_1) \ \phi \ (h_2 \ k_2) \\ &= \phi \ (g_1) \ \phi \ (g_2). \end{array}$$

 $\phi: G \to H \times K$ is one-one onto and preserves the group composition therefore it is an isomorphism.

Theorem 6. A group G is the direct product of its two sub-groups H and K i.e., $G = H \times K$, if and only if

(i) H and K are normal sub-groups,

(ii)
$$H \cap K = \{e\},$$

(iii)
$$G = HK$$
.

Proof: Let us suppose that the conditions (i), (ii) and (iii) holds good. Then we have to prove that $G = H \times K$, i.e., conditions (i) and (ii) of definition of internal direct product hold good.

Consider $h \in H$, $k \in K$ so that $h^{-1} \in H$ and $k^{-1} \in K$.

Suppose the element $h^{-1}k^{-1}hk = h^{-1}(k^{-1}hk)$ = h^{-1} (some element of H as H is a normal sub-group) = H, as $h^{-1} \in H$ and $a \in H \Rightarrow h^{-1} a \in H$.

Again $h^{-1}k^{-1}hk = (h^{-1}k^{-1}h)k$ = (some element b of K as K is a normal sub-group) k= $bk \in K$.

Since $h^{-1} k^{-1} h k$ belongs to both H and K, therefore $h^{-1} k^{-1} h k$ belongs to $H \cap K = \{e\}$, by (ii).

$$(h^{-1} k^{-1}) hk = e$$

or.
$$(kh)^{-1}(hk) = e \Rightarrow hk = (kh)^{-1})^{-1} = kh$$
.

This shows that every element of H commutes with every element of K such is condition (i) of definition of $G = H \times K$.

Suppose $g \in G$ be expressed as $g = hk : h \in H$, $k \in K$.

Now we have to prove that the condition (ii) of definition of G = H - K the above expression for g is unique.

If possible suppose $g = h_1 k_1 : h_1 \in H_1, k_1 \in K$.

$$hk = h_1 k_1 \Rightarrow h_1^{-1} (hk) k^{-1} = h_1^{-1} (h_1 k_1) k^{-1}$$

$$\Rightarrow (h_1^{-1} h) (kk^{-1}) = (h_1^{-1} h_1) (k_1 k^{-1})$$

$$\Rightarrow h_1^{-1} h = k_1 k^{-1},$$

Since $h_1^{-1} h \in H$ and $k_1 k^{-1} \in K$ therefore each of them belongs to $K = \{e\}$ by (ii).

:.
$$h_1^{-1} h = e$$
 and $k_1 k^{-1} = e$ or $h_1 = h$ and $k_1 = k$.

Hence the expression for g = hk is unique

$$G = H \times K$$
.

Conversely: Let $G = H \times K$ so that g = hk subject to conditions (i) and (ii) of definition of $G = H \times K$ and we will prove the conditions (i), (ii) and (iii) of this theorem.

(i) H and K are normal sub groups.

Let a be any element of H and g = hk be any element of G.

$$g^{-1} a g = (h k)^{-1} a (hk) = (k^{-1} h^{-1}) a (hk)$$

= $(h^{-1} k^{-1}) a (kh)$ by condition (i) of definition
= $h^{-1} k^{-1} (ak) h$
= $h^{-1} (k^{-1} ka) h = h^{-1} ah \in H$.

Since for every $g \in G$ and $a \in H$, we have g^{-1} $ag \in H$,

Therefore H is normal sub group of G

Similarly K is also a normal sub-group of G.

(ii) Now we shall prove that $H \cap K = \{e\}$.

Let $a \neq e$ be any element of $H \cap K$ so that $a \in H$, $a \in K$. certainly $a \in G$.

If e be the identity which belongs to both H and K and is the same that of G.

Now a = ea = ae.

This shows that an element a of G is expressible in two different w_i as the product of an element of H and that of K.

But this violates the definition (ii) of $G = H \times K$.

Hence our supposition that $a \neq e$ is wrong and as such

$$H \cap K = \{e\}.$$

(iii) Now we will show that G = HK.

We know that $HK \subseteq G$.

Let $g \in G$ so that g = hk, $h \in H$, $k \in K$.

$$\Rightarrow g \in HK \Rightarrow G \subseteq HK$$
.

since $HK \subseteq G$ and $G \subseteq HK$ therefore it follows that G = HK.